

Submission from the ETTA on the Draft Senior Cycle Engineering Specification

The Engineering and Technology Teachers' Association (ETTA) which is an association that represents the views of over 300 members nationally. The ETTA would like to acknowledge and commend the work undertaken by the Senior Cycle Engineering Development Group. The proposed specification is progressive and demonstrates strong alignment with university-level engineering programmes. We want to highlight that the ETTA national executive and its members remain open to constructive discussions to ensure a robust and progressive specification that takes the best interests of students, Engineering as a subject, Ireland's workforce and economy into heart going forward.

The ETTA has been represented on the development group through Mr Micheál Martin, who has raised a number of the considerations outlined below over the course of the process. How ever following requests from members through national meetings, surveys and an EGM, we respectfully submit the following key points for consideration by the Development Group, the National Council for Curriculum and Assessment (NCCA), and the Minister for Education, Ms Helen McEntee, as part of the ongoing review of the draft specification.

1. Accessibility of the Specification

While the course is undoubtedly modern and progressive, it appears to lean towards the needs of students who may pursue university education. However, a significant proportion of students who take Engineering at senior cycle go on to pursue apprenticeships, which is a career route currently facing critical shortages.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

www.etta.ie | E-mail: info@etta.ie

We are concerned that these students may feel alienated by the draft specification. International models, such as curriculum for excellence in Scotland, offering, multiple Engineering pathways for example: one focusing on Engineering Science and another on Practical Metalwork which focuses on practical machining skills, metal fabrication and thermal joining processes, catering to a broader range of student abilities and aspirations.

The ETTA respectfully requests that greater emphasis be placed on hands on practical skills development, which is integral to a deeper understanding of engineering principles and to ensuring that all students of various abilities and aptitudes, regardless of their intended career path, are appropriately catered for.

2. Depth of Content vs Available Time

E.T.T.A

The breadth of content covered in the draft specification is considerable, especially when considered against the revised allocation of a minimum 180 hours of class contact time, which is a reduction of a minimum of 10% from current arrangements. This minimum is class contact will be the allocated time due to time requirements of other subjects.

We recommend a review of the learning outcomes to ensure that they are realistically achievable within this reduced timeframe, without compromising depth of understanding or the quality of teaching and learning.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Co. Clare

065 - 9051359

3. Assessment and Integrity

ETTA has serious concerns regarding the omission of a second Additional Assessment Component (AAC). Many of the learning outcomes, particularly those focused on practical competencies, cannot be meaningfully assessed through a written examination or the current proposed project model alone. The reasons listed below provide a strong justification for the inclusion of the second AAC.

Alignment with Learning Outcomes and Specification Intent

The draft specification underscores the importance of developing technical proficiency, accuracy, and manual craft skills as central to the discipline of Engineering. Strand 1: *Engineering Processes* and Strand 3: *Design Capability* include specific learning outcomes that directly relate to these areas (e.g. outcomes 1.7, 1.11, 1.12, 1.19, 1.20, 3.15). A *Machining & Bench Skills Assessment* would offer a direct and focused means of assessing these competencies in a valid and authentic context.

Reinforcement of Key Senior Cycle Competencies

This assessment would provide meaningful opportunities for students to demonstrate a broad range of senior cycle key competencies, including:

- Numerical Reasoning through precision measurement and interpretation of technical drawings.
- Critical Thinking and Problem-Solving through real-time execution of manufacturing processes.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

- **Self-Management** through the structured and time-bound nature of the task.
- Preparation and Planning the processes involved in acquiring and preparing the
 workpieces to the specifications outlined (accuracy, precision, material selection),
 along with organising the equipment needed to complete the assessment on the day.
- **Effective Communication** through the practical interpretation and application of engineering drawings and specifications.

These competencies are embedded throughout the specification, are well-aligned with the learning outcomes and would be authentically assessed through a focused practical task.

Complementarity with the Existing Design and Manufacture Project

The current *Design and Manufacture Project* assesses students' ability to design, plan, implement, and document a project over time. While it encompasses a broad set of learning outcomes, it allows for considerable variation in project complexity. This allows each student a unique opportunity to showcase their talents and skills. In contrast, the *Machining & Bench Skills Assessment* would focus on the standardised execution of core practical skills, providing a consistent and equitable measure of craft competence. Together, these components would offer a more balanced and comprehensive profile of student achievement.

Motivation and Integration with Teaching and Learning

Introducing the Machine & Bench Skills Assessment as a Second Additional Assessment Component would reinforce Engineering's practical nature, providing a motivating goal for students and a clear instructional focus for teachers. Its integration into everyday classroom

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

practice would promote active, engaged learning and help students connect theoretical knowledge with practical application.

Equity and Consistency Across the Technology Subjects

At present, the draft *Construction Technology* specification includes a *Craft Skills Assessment* as a second additional component, while *Engineering* does not. This creates an inconsistency in how practical competencies are assessed. Including a similar assessment in Engineering would ensure equity of assessment across the technology subjects and properly reflect the full range of skills, knowledge, and abilities that Engineering aims to develop.

4. Conclusion

It is imperative that a second additional assessment component – the *Machining & Bench Skills Assessment* – be introduced in Leaving Certificate Engineering. This component would:

- Strengthen the alignment between assessment and intended learning outcomes.
- Provide a clear, uniform, fair measure of technical proficiency and skill development.
- Motivate students through meaningful practical engagement over the course of the two-year programme.
- Ensure consistency with assessment practices across other technology subjects.

Its inclusion would significantly enhance the validity, equity, and educational relevance of the subject and provide a more accurate reflection of students' capabilities in both theoretical

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Co. Clare

www.etta.ie | E-mail: info@etta.ie

understanding and practical execution. Given increasing challenges related to academic integrity in the age of AI, the traditional **Day Practical Examination** has proven itself a robust and authentic assessment method, effectively capturing practical and problem-solving skills in real time.

The proposed Machine & Bench Skills Assessment would serve as a valuable addition to the Leaving Certificate Engineering assessment framework. In line with the key competencies of the Leaving Certificate, this second additional assessment component will cultivate wellbeing by being accessible to all students, regardless of gender, and in line with the reasonable accommodations available from the SEC. It reflects best practice in practical and vocational education, supports the development of essential life and career skills, and contributes to a more inclusive, balanced, and student-centred approach to senior cycle learning.

5. Additional Assessment Component - Project Time Allocation

The draft specification allocates 45 hours for the design project, which now accounts for 50% of the overall assessment. This represents a significant increase in weighting compared to the current system, without a corresponding increase in dedicated time. There are already concerns around the time allocated to the current project with this new specification allocating less time for a higher weighting.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

E.T.T.A

6. Resourcing/Funding

Many schools have equipment in engineering rooms across the country, that are operating machinery that is of a previous generation. The resourcing and associated maintenance of engineering rooms with appropriate tools and equipment such as manual metal lathe, pillar drill, CNC Lathe, laser cutters, 3D printers, thermal joining equipment, computers, pneumatics etc is a primary concern of the ETTA (this list is not exhaustive and should cater to the full specification when released). We recommend a standardised equipment and furniture list to be released alongside the final specification, with guaranteed ringfenced funding to allow all schools to provide the same educational experience to all students studying engineering. A review of existing engineering rooms should be carried out that is standardised across all sectors regardless of school patronage.

We recommend aligning the assessment weighting more realistically with the time allocation or alternatively increasing the time available for the design project.

We thank the Subject Development Group, the NCCA, and the Minister for Education for their time and commitment to this important work, and we hope that these considerations will be taken on board in the next stage of review.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Co. Clare

Strands/Learning Outcomes

We respectfully propose the inclusion of the sections in green text and the removal of those in red text and with strike-through. These amendments are intended to support a more balanced, inclusive, and practical approach to senior cycle Engineering education.

We kindly request that the Subject Development Group, Senior Cycle Board, NCCA Board, Department of Education and Minister for Education, give due consideration to these suggestions as part of the ongoing review process. We would also like to express our sincere thanks for the time and commitment invested by all involved in developing this important specification.

Strand 1					
Engineering Processes					
Students learn about	Students should be able to				
 engineering developments past, 	1.1 evaluate and discuss the evolution of				
present and in emerging areas.	engineering practice considering the				
	evolution of tools, materials, ethics,				
	sustainability and impact on our world.				
how engineering contributes to the	1.2 appreciate the impact that engineering				
quality of daily life.	developments have had on our world.				

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON: Mr Mark O'Dea

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

www.etta.ie | E-mail: info@etta.ie

•	the contribution		s of nota		
engineers and scienti			st		

- 1.3 describe the contributions of key figures in engineering and technology. List of key figures to be updated each year, can be updated each year once provided in September of 5th year.
- 1.4 evaluate the role of key figures in the areas of engineering thinking and practice.
- engineering professions and pathways, to include an awareness of the main engineering disciplines for example mechanical engineering, materials engineering, aeronautical engineering, quality engineering or environmental engineering.
- 1.5 describe the role of the engineer within a range of engineering disciplines.

- the ethical issues involved in engineering including social, economic and environmental considerations and what measures can be put in place to promote them.
- 1.6 evaluate the environmental considerations, economic, and societal impacts of engineering decisions in historical and modern times.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

www.etta.ie | E-mail: info@etta.ie

- the principle of sustainable practices to include rethink, reduce, reuse, recycle, and the right to repair.
- manufacturing processes and technology, including machining processes, thermal and nonthermal assembly techniques and manufacturing techniques
- 1.7 demonstrate proficiency in the use of craft skills, machining techniques and assembly techniques on a range of materials in the engineering classroom, ensuring an adherence to precision, quality and finish.
- 1.8 describe and use a range of additive and subtractive manufacturing techniques adhering to ISO standards of accuracy and precision.
- 1.9 describe and apply the fundamental principles and theories relating to manufacturing processes, assembly techniques, and their applications in a range of contexts. Theories and principles to be included here.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON:

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

www.etta.ie | E-mail: info@etta.ie

•	the skills that are applicable in the	1.10 apply appropriate manufacturing
	engineering classroom to include	processes for required applications.
	both manual and automated	
	processes.	
•	transferring measurements and	1.11 demonstrate proficiency in using hand
	details from a working drawing to a	and machine tools
	workpiece, ensuring precision and	and machine tools
	adherence to specifications.	
•	best practice of health and safety in	
	the engineering classroom	1.12 apply safe working techniques and
	ů ů	practices and display an awareness of the
		importance of health and safety.
		xxx. demonstrate an ability to transfer
		measurements from a working drawing to a
		working material
•	digitally controlled manufacturing	1.13 describe the fundamental concepts
	equipment and techniques	and principles of computer aided
		manufacturing techniques.
		1.14 export data from CAD software
		systems to manufacture components.
		1.15 perform a manufacturing sequence on
		digitally controlled equipment.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON:

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

www.etta.ie | E-mail: info@etta.ie

	1.16 recognise emerging trends and			
	technologies in digital manufacturing.			
the treatment of materials to alter	1.17 explain the effects of heat			
their properties for specific	treatments/thermal manufacturing			
applications.	methods on materials, their properties, and			
	their applications.			
key criteria for selection of the	1.18 select appropriate materials for			
optimum material for a particular	required applications based on their			
·	material properties, displaying an			
application based on its properties.	awareness for sustainable design and the			
	impact on our environment.			
planning and managing the	1.19 plan the manufacturing sequence for a			
manufacture of a product.	range of projects and tasks.			
aukina in angustian with athors	1.20 manage time and resources within the			
working in cooperation with others	allocated timeframe to produce a product.			
and reflect on their own				
contribution.	1.21 evaluate and critically reflect on the			
	outcome of work completed.			
	1.22 document work appropriately in			
	1.22 document work appropriately in			
	tandem with a design process.			

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON: Mr Mark O'Dea

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

www.etta.ie | E-mail: info@etta.ie

 measurement and metrology, to 	1.23 describe the necessity for a unified			
include application of the SI system,	system of measurement.			
standardisation and calibration of				
measuring equipment.				
the use of precision measuring	1.24 demonstrate the correct use of simple			
equipment.	and precision measuring tools and			
	processes.			
• intelligent and sustainable	1.25 evaluate developments in			
manufacturing technologies and	manufacturing technologies and their			
innovations.	impacts on manufacturing and society.			
• contemporary automated				
manufacturing systems, and the	1.26 outline the features and the			
technologies used in them.	operations of an automated manufacturing			
	facility.			
quality assurance in product design	1.27 describe key concepts involved in			
and manufacture.	quality management, statistical process			
	control and sampling. Key concepts to be			
	included here.			
• fundamental concents of reliability	1.28 explain machine maintenance			
 fundamental concepts of reliability. 	intervals and outline examples of			
	preventative maintenance.			

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Strand 2						
Automation and Control Systems						
Students learn about	Students should be able to					
 mechatronic systems and their applications. system analysis techniques to capture and communicate the operation of control and monitoring systems. 	 2.1 determine the functional requirements of an engineering control system. 2.2 model systems inputs, processes and outputs and the relationships between them using state machine diagrams 2.3 recognise the key role that control and energy systems play in engineering. 					
 hardware and software inputs, processes and outputs required for control and monitoring of hydraulic, pneumatic, electronic, electrical and computer based systems. selecting the energy requirements and sources for a specific control system. 	 2.4 identify appropriate inputs and outputs for an automated system. 2.5 specify and configure sensors and actuators for a range of simple automated systems. 2.6 describe the design of a control system using an appropriate technical format. 2.7 identify suitable energy sources to meet input and output requirements. 					

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

www.etta.ie | E-mail: info@etta.ie

	2.8 evaluate the relevant inputs and			
	outputs for any energy requirements.			
	2.9 recognise the importance of energy			
	efficiency and the necessity to use			
	renewable energy sources.			
approaches to designing Human	2.10 appreciate control and monitoring			
Machine Interfaces (HMI) to provide	design practice, in terms of the user			
a system with local control and	experience, safety and inclusion.			
monitoring capabilities.				
	2.11 implement hardware, software, local			
1	control and monitoring interfaces using			
	system analysis specifications.			
• remote access control and	2.12 use wired and/or wireless			
monitoring facilities, using wired	communication techniques to remotely			
and/or wireless based	control devices.			
communications.				
	2.13 test and debug wired and/or wireless			
	communication control and monitoring			
	systems.			
open and closed loop control	2.14 describe the difference between open			
systems.	and closed loop control systems.			
autonomous control systems such				
as electromechanical and				
mechatronic control systems.				

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

www.etta.ie | E-mail: info@etta.ie

•	automation		projects	and	how	to
	include	the	design,	man	ufactı	ıre
	and test	ing o	of control	svste	ms.	

- 2.15 describe the advancements of autonomous control systems.
- 2.16 describe the role of control systems in advanced manufacturing and society.
- 2.17 solve design problems using suitable levels of control and automation technology.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

NATIONAL CHAIRPERSON:

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON:

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

Strand 3						
Design Capability						
Students learn about	Students should be able to					
 communication of design principles and concepts using a range of media including sketching, digital and physical models. 	and documenting designs.					
 interpreting and creating engineering drawings in compliance with drafting standards. 	norms. 3.4 analyse and interpret technical sketches and drawings to extract relevant information. 3.5 create engineering working drawings through CAD and/or traditional draughting methods that adhere to established ISO drafting standards.					

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

www.etta.ie | E-mail: info@etta.ie

• the engineering design process as	3.6 describe and apply the steps involved in			
an iterative approach to a design	the engineering design and			
problem.	manufacturing process.			
• following a systematic process to	3.7 create a design folio to document and			
arrive at a solution to a design brief	evaluate the design and manufacture			
and documentation of the process.	process.			
 sustainable and ethical design 	3.8 demonstrate sustainable design			
including reuse, remanufacture and	practices incorporating ethical design			
modular design.	decisions and appropriate safety			
 ethical sourcing, energy 	considerations.			
optimisation, and design for safe				
use				
the product lifecycle.	3.9 describe the main stages and			
	characteristics of the product lifecycle.			
systems thinking related to product	3.10 apply principles of product			
design and functionality.	functionality during the design process. Key			
	principles to be included in the			
	specification.			
 human factors and ergonomics in 	3.11 apply principles of human-centred			
design.	design and universal design. Key principles			
300.B	to be included in the specification.			

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

www.etta.ie | E-mail: info@etta.ie

•	specification of mechanical and	3.12 use engineering judgement and/or
	electrical components.	basic calculations to specify mechanical
		components.
•	principles of Engineering design	3.13 select the correct electrical
	including the design of machine	components for engineering applications
	elements, mechanisms and	using recognised ISO symbology technical
	powered systems.	data .
	powered systems.	
		3.14 calculate the specifications and
		dimensions required for the design of
		machine components and powered
		systems. (formulae to be provided in the specification)
•	using SI units, basic and derived, for	2.45 and the leaves of limits and fits to the
	measurement and calculations, and	3.15 apply tolerances, limits and fits to the
	giving due consideration to the	design of assembled components.
	limits of the precision and accuracy	
	of measurement	
•	prototyping and testing in design.	3.16 create working prototypes to explore
	F. 1124/EO 22 1220D 202D	ideas, test functionality, and inform design
		decisions.
		decisions.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Engineering Technology Teachers' Association

Cumann na Múinteoirí Innealtóireachta Teicneolaíochta

www.etta.ie | E-mail: info@etta.ie

• k	кеу	testing	concepts	and	3.17 explain the importance of testing in				
t	termin	ology in en	gineering.		the	engineering	design	and	product
					development process.				

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

NATIONAL CHAIRPERSON:

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON:

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

Strand 4				
Engineering Principles and Energy				
Students learn about	Students should be able to			
the SI system of units.	4.1 calculate engineering quantities using appropriate SI units for design and manufacture.			
 derivation and conversion of SI units. 				
the production of materials including metals and non-metals and their impact on the	4.2 describe the production of common engineering materials.			
and their impact on the environment.	4.3 explain the impact of production and disposal of materials on the environment.			
 sustainable management of natural resources. 	4.4 identify approaches used to conserve natural resources.			
material testing.	4.5 describe the various tests available to assess material properties.4.6 interpret and communicate test data from material tests to make informed material selection choices.			

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

NATIONAL CHAIRPERSON:

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON:

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

www.etta.ie | E-mail: info@etta.ie

• the relationship between the	4.7 describe the relationship between
microstructure and macro	microstructure and material properties.
properties of a range of engineering	
materials.	4.8 use phase diagrams to explain the
	effects of heat treatment processes for
	altering the properties of metals.
	4.9 identify the effects of mechanical
	working on material properties.
	4.10 symbols the process of correction and
 corrosion to include galvanic 	4.10 explain the process of corrosion and
corrosion, stress corrosion,	preventative measures.
intergranular corrosion, fretting	
corrosion, sacrificial and cathodic	
protection.	
 the concepts of work, energy and 	4.11 calculate the requirements for energy,
power.	work and power in the context of
	engineering systems. (formulae to be
	provided in the specification)
 forms of energy and energy conversions. 	4.12 describe the energy conversions
	occurring in engineering systems and
	processes.
•	

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

NATIONAL CHAIRPERSON:

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON:

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

	4.13 analyse closed systems or steady flow	
	systems using a simplified energy balance.	
• the principle of conservation of	4.14 calculate mechanical and electrical	
energy.	power demands and the energy efficiency	
	of engineering systems. (formulae to be	
	provided in the specification)	
 energy efficiency, energy dissipation and energy storage. 	4.15 evaluate solutions to engineering challenges based on energy efficiency.	
• fundamental principles of	4.16 describe the types and applications of	
mechanics, including loads, forces	forces and motion.	
and motion.	4.17 apply calculations of static forces in	
	the design of load bearing elements and	
	components. (formulae to be provided in	
	the specification)	
elements of machine design.	4.18 design linkages and mechanisms to	
 mechanics of machines to include 	produce given motion profiles.	
the specification of machine components.		
 geared systems, and mechanisms. 	4.19 describe and use different power	
	transfer systems and drive systems.	

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

www.etta.ie | E-mail: info@etta.ie

 using calculations as part of the 	4.20 identify and describe friction forces for
design process.	drive and braking applications.
	4.21 calculate mechanical advantage,
	velocity ratio and efficiency for simple
	machines. (formulae to be provided in the
	specification)
	4.22 combined and leaves and
	4.22 apply calculations for forces and
	power in the specification of mechanisms
	and motor driven systems. (formulae to be
	provided in the specification)
AC electrical systems.	4.23 describe applications of AC and DC
	based power.
 voltage, current and power in DC 	4.24 analyse identify and describe DC
circuits.	circuits for sensor and drive systems in DC
	circuits.
	4.25 design and build circuits to integrate
DC circuit design, motors and power.	with control applications.
the functions and application of off	
the shelf electronic components.	

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

_	fluid	hacad	cyctome
_	nara	base a	373661113

 basic concepts of pneumatic and hydraulic systems. 4.26 calculate the forces acting on master and slave cylinders involving static fluid pressure using Pascal's Law.

4.27 interpret and apply pneumatic and/or hydraulic circuit diagrams involving valves, cylinders and energy supplies.

4.28 describe the applications of fluid-based systems in real life.

Assessment for Certification

Considering the points above, the ETTA proposes the following assessment structure for consideration:

Written Examination: 50%

• AAC 1 – Design Project: 25%

• AAC 2 - Day Practical Assessment: 25%

This approach would offer a fairer, more balanced, and more inclusive assessment model that retains academic rigour while acknowledging the diverse pathways students pursue after school.

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

NATIONAL CHAIRPERSON:

Mr. Sean O'Gorman, Laurel Hill Secondary School FCJ, South Circular Road, Limerick, Tel. 061 – 319 383

NATIONAL SECRETARY:

Mr Andrew Donnelly St. Oliver's Community College, Rathmullen Rd. Drogheda, Co. Louth 041 - 9838390

NATIONAL TREASURER:

Ms. Aoife Heeran Lough Allen College, Lough Allen, Drumkeerin, Co. Leitrim 071 – 964 8017

NATIONAL ASSITANT CHAIRPERSON: Mr Mark O'Dea

Mr Mark O'Dea Kilrush Community School, Kilrush, Co. Clare 065 - 9051359

JOURNAL EDITOR:

Engineering Technology Teachers' Association

Cumann na Múinteoirí Innealtóireachta Teicneolaíochta

www.etta.ie | E-mail: info@etta.ie

The ETTA remains open to further discussions around the development the new Engineering specification.

We thank the Subject Development Group, the NCCA, and the Minister for Education for their time and commitment to this important work. We appreciate the Subject Development Group, NCCA and the Minister for Education taking the views of the Engineering Technology Teachers Association, on behalf of our membership, on board in the next stage of the review process.

Yours sincerely,

Engineering Technology Teachers' Association (ETTA)

This document is based on the original [NCCA Draft Leaving Certificate Engineering Specification 2025] and has been adapted by Engineering Technology Teachers Association for review and discussion purposes. Any suggested modifications are the views of the Engineering Technology Teachers Association and do not represent the official position of the NCCA

Co. Clare